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Chapter 1  

Introduction 

 

Here, we report our robot “Curiosity” is able to explore autonomously and efficiently 

in large-scale environment, as well as mapping accurately. “Curiosity” possesses a 

hybrid controller, including frontier based destination decider module, revised A* 

algorithm based path planner module, Bayes’s rule based cartographer module, “follow 

the carrot” based path follower module and vector field histogram based obstacle 

dodger module, who has tremendous application in space, ocean or radioactive 

environment exploration. 

Our program has eleven files, where mapMake.py, getDst.py, pathPlan.py, 

pathFollow.py and vfh.py correspond to the cartographer module, destination decider 

module, path planner module, path follower module and obstacle dodger module 

respectively; MRDS.py interacts with Microsoft Robotics Developer Studio 4 (MRDS); 

basic.py includes some common functions; input.py reads arguments; main.py 

combines aforementioned files together; visualize.m visualizes maps in the Matlab and 

mapper supply an interface that our program can be called from Linux. 

The program takes five arguments: url, 𝑥1, 𝑦1, 𝑥2 and 𝑦2. url specifies the address 

and port used to connect to MRDS. url is truncated to remove “http://”. x1, y1, x2 and 

y2 give the coordinates of the lower left and upper right corners of the area need to be 

explored. We assume that the area always includes the starting position (0, 0).  

The program will interact with the robot by making http connections to the locally 

running MRDS server. A Robosoft Kompai robot is used in the simulation environment: 

Factory. 

The achieve funtion save the current map as an image file every 5 seconds. 

matplotlib.pyplot is employed to save the image. Note that Putty doesn’t support the 

graphical output, hence a non-interactive backend directive matplotlib.use() is called 

before importing pyplot to prevent the window appearance of the generated images. 

Meanwhile, the program will also save the current map, robot position, path as text file 

for further analysis. 

The metric map is a discrete, two-dimensional matrix. Each grid cell in a map is 

assigned a value that measures the subjective belief of the corresponding region of the 

world is occupied, coined mapProb in the program accordingly. Therefore the value is 

close to 1, if the grid cell is occupied, and 0 otherwise. The initial value of all grid cells 

is 0.5. Occupancy values are determined based on sensor readings. The resolution of a 

grid must be fine enough to capture important detail of the world and not too fine to 

prevent the complexity of time and space. The resolution of the grid is set to 0.5 in our 

program, larger than the length of the robot. Thus the metric map contains the belief as 

to whether or not the robot can be moved to that grid cell and represents the 

configuration space of the robot projected into the x-y plane. 

“Curiosity” is equipped with an array of laser scanners which measures proximity of 
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Figure 1. The architecture of “Curiosity” 

 

nearby objects with high spatial resolution. The array contains 271 laser scanners 

evenly distributed from -135 degree to 135 degree with an interval of 1 degree. The 

maximum detection distance is 40 meters. If an obstacle is more than 40 meters away 

from the robot, the property ‘echoes’ gotten from laser is 40 and the property ‘overflow’ 

is 1. Besides, “Curiosity” is also equipped with a position sensor which provides 

location information of robot. Note that the heading of robot is represented in 

quaternion (w, x, y, z). Following formula (1) is used to convert the quaternion to the 

Euler angle. 

Path Follower 
Pose 

Pose 
Obstacle Dodger 

Laser 

Sensor 
Laser Pose 

Actuator 
Linear Speed 

Angular Speed 

Controller 

Reactive Layer 

Deliberative Layer 

Destination 

Destination Decider 
Pose 

Path Planner Pose 

Path 

Map 

Cartographer
Laser 

Pose 

Map 



3 
 

φ =  tan−1
2(𝑤 ∗ 𝑧 + 𝑥 ∗ 𝑦)

1 − 2(𝑦2 + 𝑧2)
 

The laser scanner cannot see through walls. If the robot is going to build a complete 

map it has to explore the environment, using its sensors and moving to different 

locations, until all areas are covered [2]. The flowchart of “Curiosity” is illustrated in 

figure 1. 

The sensor will export pose and laser data to the controller. 

The controller is a hybrid of deliberative layer and reactive layer. The deliberative layer, 

which represents and maintains the knowledge of the world, involves cartographer 

module, path planner module and destination decider module. The cartographer module 

reads laser and pose and deliver map to destination decider module and path planner 

module. The destination decider takes pose and map as input and output the coordinate 

of the destination. Then destination, pose and map are imported to the path planner 

module and generate a list of coordinates of path.  

The reactive layer, which has more concrete responses to the environment and less 

knowledge representation and planning, involves the path follower module and obstacle 

dodger module.  

When there is no obstacles nearby, which is checked by the isVfh function, the path 

follower module takes pose and the path transferred from path planner module as input 

and sets the linear speed and angular speed. If the distance between robot and obstacle 

is less than 2 meters, then the goal direction, pose and laser will be sent to the obstacle 

dodger module and let the obstacle dodger algorithm determine a new goal direction 

[3]. 

In the current version of our program, obstacle dodger module is disabled. For the 

reason that in the most cases, “Curiosity” strikes the wall because of the unsatisfactory 

planned path and inaccurate sensor data. Even though the robot avoids the obstacle, 

path follow module will misguide the robot to the obstacle again. Hence, when an 

obstacle is near to the “Curiosity”, it will turn back, stop and get a new destination. 

A list of unknown grid cells that is going to be detected, called roster, is derived through 

getRoster function. Destination decider won’t decide next destination until “Curiosity” 

has reached the destination or most of the roster is detected, which is checked by replan 

function. Considered the time that destination decider module and path planner module 

require, “Curiosity” will stop and wait for the following command.  

Destination decider will return a list of destination sorted base on the ascending order 

of the cost function value. For the complexity of the topography, sometimes path 

planner fails to search a path to the destination. Then next destination will be popped 

out until the path is found. 

This whole process won’t stop until isEnd function gives a positive signal, who 

monitors the progress of the exploration and the number of frontiers. 

The actuator executes movement according to linear speed and angular speed. 

Exploration strategies has two general approaches: reactive and model based. The most 

widely used exploration strategy in reactive robotics is wall following. However, wall 

following is a local method and easily get trapped in loops. Model based strategies on 

basis of the same underlying idea: go to the least-explored region [2].  
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We take frontier based exploration, a kind of model based strategy. Frontiers are 

defined as the grid cell at the boundary of empty and unknown areas, which is an 

interesting place for exploration. Due to the great number of frontiers, nearly 4000 grid 

cells satisfy the criterion of frontier at beginning, a filter is applied to reduce the number 

of frontiers by a factor of 20. This reduction is reasonable since there is no need to keep 

massive adjacent grid cells for further calculation and the remaining frontiers could be 

seen as the representations of local unknown areas. Frontiers are scored depend on the 

cost function, formulated in equation 2, where 𝑘𝑑 , 𝑘𝑠 and 𝑘𝑎 are the significance 

coefficients. 𝑑𝑖, 𝑠𝑖 and 𝑎𝑖 are normalized. 

𝑣𝑖 = 𝑘𝑑 ∗ 𝑑𝑖  + 𝑘𝑠 ∗ 𝑠𝑖 + 𝑘𝑎 ∗ 𝑎𝑖                   (2) 

The cost function could be divided into three terms: 

The first term is the cost for going to frontier 𝑖, where 𝑑𝑖 is the distance between the 

robot and frontier 𝑖.  

The second term is the cost for the repeating detection, where 𝑠𝑖  is the negative 

number of unknown grid cells the robot can detect when it is at frontier 𝑖. Here we 

make three simplification. The first one is that we presume the heading equals to the 

orientation of line from the robot to the frontier 𝑖. Since that 𝑠𝑖 is dependent on the 

heading of the robot, which will reach its minimum when the heading perpendicular to 

tangent line of frontier 𝑖. The second one is that we presume the laser scanner can see 

through walls here, the unknown grid behind an obstacle is also taken into account. The 

third one is that we presume a subset of the coverage of laser scanner array could reflect 

the real number of unknown grid cells. Since that computation of this term is the most 

time-consuming module in our program. We reduce 20000 covered grid cells by a 

factor of 20.  

The third term is the cost for turning to frontier 𝑖, where 𝑎𝑖 is the difference between 

the robot heading and the orientation of line from the robot to the frontier 𝑖. We expect 

the robot will prefer front frontiers more than back frontiers. 

Revised A* algorithm is applied to the path planner module. A* algorithm is an 

informed search algorithm, which selects the node to expand next by using an 

evaluation function 𝑓(𝑛) shown in equation 3, where 𝑔(𝑛) is the cost of getting to 

one node and ℎ(𝑛) is the heuristic evaluation of the node. Here, the heuristic is the 

straight line distance between the grid cell and the goal. A* algorithm will find the 

shortest path to the goal. However, the shortest path is not the optimal path. We hope 

that the path stay away from obstacles. Consequently, a topography term is taken into 

account. The evaluation function of the revised version of A* algorithm is the 

combination of the 𝑔(𝑛), ℎ(𝑛) and the topography. 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)                         (3) 

topoEval function will evaluate the topography neighbor to one grid cell in terms of the 

parameter l. For example, if l equals to 2, then the value of 5x5 matrix center on that 

grid cell will be summed and normalized. As the value of one grid cell reporting the 

probability that the corresponding region is occupied, we try to minimize cost of 

topography, as well as the cost of 𝑓(𝑛). Nevertheless, topoEval function seems to has 

no effect: planned path tend to close to rather than away from the obstacles.  

Thus the blur function is called to keep a safe distance to obstacles and minimize the 
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risk of collisions. The blur function will enlarge the size of obstacles in terms of the 

parameter l and return a blurred map. For example, if l equals to 2, then the 5x5 matrix 

center on occupied grid cell all will be regarded as occupied. A small l is useless while 

a large l will block proper path that can be gone through. l equals to 5 in our program. 

The blurred map will be imported to path planner module to obtain a safer path. 

Path follower module takes “follow the carrot” algorithm, a straight forward algorithm 

for path tracking. The principle of the “follow the carrot” algorithm is that the robot 

steers towards a “carrot” at each time step. We keep the linear speed a constant and 

change the angular speed according to the “carrot” and the robot position. The angular 

speed 𝜔 is determined by equation 4, where k is the gain factor and orientation error 

𝜀 is the angle between the robot heading and the line from the robot to the target. 

Schematic of the ‘follow the carrot’ algorithm is shown in figure 2. It should be 

mentioned that 𝜀 need to be converted to the range from −𝜋 to 𝜋. 

𝜔 = 𝑘𝜀                                (4) 

Carrot point is decided based on the look ahead distance. The robot will tend to 

oscillate around the path if the look ahead distance is too small, while ignore the 

situation around if the look ahead distance is too large. If the distance between the 

robot and the carrot point is below a certain threshold, the nextPoint function will find 

another carrot point ahead of the look ahead distance on the path to renew the current 

one. Linear speed is set to 3.0, look ahead distance is set to 1.6 and k is set to 1.1 in 

our program. 

 
Figure 2. Schematic of the ‘follow the carrot’ algorithm 

 

Obstacles dodger module takes vector field histogram (VFH) method. The first step of 

VFH is creating a one-dimensional polar histogram around the robot, resulting in a 

number of sectors with obstacles. Obstacles are allocated to sectors according to the 

angular resolution 𝛼 and the value of one sector is the distance to the nearest obstacle 

in that sector. A sector is thought to be empty if whose value larger than a certain 

threshold. 

The next step is selecting the steering angle. Candidate valley could be single empty 

sector or consecutive empty sectors, representing a free space where the robot may pass. 

The goal valley is chosen with the lowest value of the cost function formulated in 

equation 5, where 𝑘𝑠 , 𝑘𝑎  and 𝑘𝑡  are the significance coefficients. 𝑠𝑖 , 𝑎𝑖  and 𝑡𝑖 

are normalized. 

𝑔𝑖 = 𝑘𝑠 ∗ 𝑠𝑖  + 𝑘𝑎 ∗ 𝑎𝑖 + 𝑘𝑡 ∗ 𝑡𝑖                   (5) 

The cost function could be divided into three terms: 

The first term is the cost for the risk going at the candidate direction, where 𝑠𝑖 is the 

negative number of empty sectors in the candidate valley. 

The second term is the cost for turning to the candidate direction, where 𝑎𝑖  is the 

difference between the candidate direction and the orientation of the robot. 
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The last term is the cost for turning to the target direction, where 𝑡𝑖 is the difference 

between the candidate direction and the target direction [3]. 

Cartographer module takes charge of building sensor model, which connects sensing 

and perception. The sensor model mainly focus on two problems: interpretation and 

integration of the sensor readings. Interpretation means mapping sensor readings to 

occupancy values and integration means integrating multiple sensor interpretations 

over time to yield a single combined estimation of occupancy. 

The role of mapUpdate function is mapping the sensor readings from continuous world 

to the metric map and updating mapFreq. mapFreq records the times a grid cell is 

detected as empty or occupied. If the property ‘overflow’ of one laser is 1, then all the 

grid cells the laser passing through are empty. Otherwise, except for the grid cell located 

at the end of the laser beam is occupied, other grid cells are empty. getLine function 

will return a list of grid cells the laser passing through when informed of the start point 

and end point of the laser beam. 

The role of integrate function is interpreting and integrating the sensor readings, namely 

calculating mapProb according to mapFreq by the evidential method Bayes’s rule. The 

sensor reading at time t is denoted as 𝑠(𝑇) and the probability that a grid cell (x, y) is 

occupied conditioned on the sensor reading 𝑠(𝑇)  is denoted as  𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝑇)) . 

Therefore 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2),⋯ , 𝑠(𝑇)), which is condition on all sensor readings, can 

be computed as equation 6. 

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇)) = 1 −

(

 
 1

1 + ∏
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠

(𝜏))

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

𝑇
𝜏=1

)

 
 

 

For the ignorance of the accuracy of the laser scanners, we suppose that the probability 

that a grid cell (x, y) is occupied conditioned on the sensor reading is occupied is set to 

0.9 and the probability that a grid cell (x, y) is empty conditioned on the sensor reading 

is empty is also set to 0.9.  

The derivation of equation 6 follows directly from Bayes’s rule and the conditional 

independence assumption. According to Bayes’s rule, 

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇))

 

=
𝑃𝑟𝑜𝑏(𝑠(𝑇)|𝑜𝑐𝑐𝑥,𝑦, 𝑠

(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(𝑠(𝑇)|¬𝑜𝑐𝑐𝑥,𝑦, 𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

 

which can be simplified by virtue of the conditional independence assumption to 

=
𝑃𝑟𝑜𝑏(𝑠(𝑇)|𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑠(𝑇)|¬𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

 

Applying Bayes’s rule to the first term leads to 

=
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠

(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝑇))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))

𝑃𝑟𝑜𝑏(¬𝑜𝑐𝑐𝑥,𝑦|𝑠
(1), 𝑠(2), ⋯ , 𝑠(𝑇−1))
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Induction over T yields: 

=
𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)
∏

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦|𝑠
(𝜏))

𝑇

𝜏=1

1 − 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)

𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦)
 

Here 𝑃𝑟𝑜𝑏(𝑜𝑐𝑐𝑥,𝑦) denotes the prior probability for occupancy, which, if set to 0.5, can 

be omitted in the equation. 
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Chapter 2  

Discussion 

 

Although grid-based method produce accurate metric maps, its complexity often prohibits 

efficient planning in large-scale environments. The getDst function and pathPlan function 

take most of the time in our program. 

Due to the lack of the display of planning path in the Microsoft Visual Simulation 

Environment (MVSE), we are inaccessible to the flaws in our program. Therefore, we 

invoke achieve function every several seconds to append current map, path and robot 

position to the corresponding list. The lists will be saved as text files after simulation and 

pre-processed before loaded into Matlab. Then, getframe function is called to get frames 

from the superimposition of time lapse map, path and robot position. Movie function is 

called to play recorded movie frames. Movie 1 in the supplementary material shows the 

perfect path following performance under the sampling interval is 1 second. Movie 2 in the 

supplementary material shows rational destination decision and path planning, as well as 

perfect path following under the sampling interval is 5 seconds. We notice that the robot 

start to oscillate around the path in the later stage of exploration and this phenomenon 

disappears when the achieve function is not called. Thus we guess that the large volume 

of saving files damper the speed of computation. 

Through video we find some interesting details: 

One is that the boundaries of obstacles is highly variable. Specifically, previous occupied 

grid cells will become empty and their empty neighbors will become occupied, or empty 

grid cells near an occupied grid cell will become occupied. Except for the noise of the 

sensors, discretization is also a contributing factor for this variability. Even small deviation 

in the continuous world will cause appreciable difference in the discrete grid map. For 

example, -49.501 is divided into grid 0 and -49.499 is divided into grid 1 in our case. 

Another interesting detail is that when the robot collide with an obstacle, the laser scanners 

will be influenced and generate “ghost grids” on the map. The ghost grid is the grid cell 

who is empty while considering it is occupied on the map. The ghost grid could be 

eliminated through repeating detection. 

Figure 3 shows the map of assigned square in the factory environment constructed by 

robot “Curiosity” under the input 𝑥1 =  −50, 𝑦1 =  −50, 𝑥2 = 50 and  𝑦2 = 50. Figure 4 

shows the visual and physics rendering of the factory environment screenshotted from 

the MVSE. Although two figures are extremely identical, still some problems could be 

found in our map. Problems, labeled in figure 3, could be classified into three categories, 

which indicate the defect of our sensor model. 

The first problem is the absent street lights. We suspect that the small sectional area of 

street light can’t guarantee it can be detected by laser scanners every time. To check 

whether “Curiosity” detect the street lights, we visualize the frequency of every grid cell 

detected as occupied and empty. As shown in figure 5, the upper left and right panels are 

the frequency map of occupied or empty signal detected respectively. The value of each  
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Figure 3. The map of assigned square in the factory environment constructed by robot 

“Curiosity” under the input 𝑥1 =  −50, 𝑦1 =  −50, 𝑥2 = 50 and  𝑦2 = 50. The circled 

number labels where the problem is. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The rendering of the factory environment 

(left panel) The visual rendering of the factory environment. (right panel) The physics 

rendering of the factory environment. 
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Figure 5. The frequency map. (upper left panel) The frequency map of occupied signal 

detected. (upper right panel) The frequency map of empty signal detected. (lower left 

panel) The normalized frequency map of occupied signal detected. (lower right panel) 

The normalized frequency map of empty signal detected. 

 

grid cell is the times this grid cell detected as occupied or empty. The lower left and right 

panels are the normalized frequency map of occupied or empty signal detected 

respectively. The value of each grid cell is the normalized frequency this grid cell 

detected as occupied or empty. Apart from the frequency map of empty signal detected, 

the other three frequency maps all sketch the outline of obstacles, especially the missing 

street lights. Therefore, the grid cells where street lights locate are detected more times 

as empty, which covers the times detected as occupied. 

The second problem is the inscrutable wall passing, which is also observed in the video. 
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Figure 6. The maps constructed by “Curiosity” under different inputs. (left panel) The map 

constructed under the input 𝑥1 =  −42, 𝑦1 =  −39, 𝑥2 = 17 and  𝑦2 = 36. (right panel) 

The map constructed under the input 𝑥1 =  −12, 𝑦1 =  −15, 𝑥2 = 5 and  𝑦2 = 8. 

 

This may ascribed to the noise of sensors and the complexity of topography. The only 

one wall passing example we figure out happens at the entrance of the plant located in 

the center of the map. There is a threshold at the entrance and a slope in front of the 

entrance. Robot won’t detect anything behind the slope until it drives across the 

threshold. 

The third problem is the missing boundaries. There should be a wall in the place where 

the label is. Unlike the absent street lights in the first problem, the wall is easily detected. 

This problem is relevant to the aforementioned variability of the boundaries of obstacles. 

Indeed, we can find these missing boundaries in four frequency maps. 

In conclusion, the above three problems instruct us to reduce the probability that a grid 

cell is empty conditioned on when sensor reading is empty. 

Figure 5 also reveals that the grid cells in the center of the map are more detected than 

the peripheral grid cells. Besides, there is a hot spot near the entrance of the plant 

located in the center of the map because of the high centrality of that node in the 

geographical network. 

Next, we test whether the controller can guide “Curiosity” around any given square area. 

As shown in figure 6, “Curiosity” constructs two maps under different inputs. Both maps 

are similar to the visual and physics rendering of the factory environment shown in figure 

3. Movie 3 in the supplementary material shows the process “Curiosity” explores the map 

under the input 𝑥1 =  −12, 𝑦1 =  −15, 𝑥2 = 5 and  𝑦2 = 8. 

We try to create some index to evaluate the performance of exploration. The first index is 

the time spent on exploration. The average exploration time of our program is about 150 

seconds with the linear speed 3.0. 

Another index is the efficiency of exploration, which is define as the ratio between the 

path length taken by the omniscience and the path length taken by the robot. An 

intelligent agent would try to shorten the exploration path and avoid passing explored 



12 
 

region. Due to the dense equipment of the laser scanners, the grid cells close to the 

robot are more detected. Therefore, we can discern the trajectory of the robot from the 

frequency map of empty signal detected or the general frequency map. The trajectory 

implicates that our robot takes a relatively efficient strategy. 

Other exploration methods, such as the value iteration algorithm, also have excellent 

performance. The basic idea of value iteration algorithm is that the algorithm updates the 

value of all explored grid cells by the value of their best neighbors, plus the costs of 

moving to this neighbor. Each value measures cumulative cost for moving to the nearest 

unexplored cell. Once value iteration converges, greedy exploration simply amounts to 

steepest descent in the value function [1]. 

From figure 3 we could see that not all unknown grid cells could be detected. Take the 

plant located in the upper left corner of the map as an instance, there is no entrance to 

that plant. Now, the program will end at the 77% of completion, actually it is the maximum 

the robot can detect. Hence an new function is required to help isEnd function judging the 

completion of the exploration: If a terrain is surrounded by obstacles, it would be 

regarded as obstacle either. 
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Appendix 

 

1. main.py 

 

from time import sleep 

from math import atan2 

from threading import Thread 

import matplotlib 

matplotlib.use('Agg') 

from matplotlib import pyplot 

 

from basic import size, save, distance 

from input import row, col, gridizeX, gridizeY 

from pathPlan import pathPlan 

from pathFollow import pathFollow, nextPoint 

from getDst import getDst, getRoster, replan 

from mapMake import mapUpdate, integration, gro 

from MRDS import getPose, getLaser, postSpeed 

from vfh import vfh 

 

 

def archive(): 

    global mapProb 

    sampleInterval = 5 

while not end: 

    plt.imshow(mapProb) 

        plt.savefig('map.jpg') 

        sleep(sampleInterval) 

 

def isVfh(front): 

    for i in range(len(front)): 

        if front[i] < 1.0: 

            return True 

    return False 

 

def isEnd(mapFreq): 

    global end 

    row, col = size(mapFreq) 

    detected = 0.0 

    end = False 

    for i in range(row): 

        for j in range(col): 
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            if mapFreq[i][j][2] > 0: 

                detected = detected + 1 

    progress = detected / (row * col) 

    if progress > 0.75: 

        end = True 

    return end 

 

def main(): 

    global mapFreq, mapProb, count, path, gridRobotX, gridRobotY, end 

    pose = getPose() 

    x = pose['Pose']['Position']['X'] 

    y = pose['Pose']['Position']['Y'] 

    gridRobotX = gridizeX(x) 

    gridRobotY = gridizeY(y) 

     

    laser = getLaser() 

    mapFreq = mapUpdate(pose, laser, mapFreq) 

    blurMapFreq = gro(mapFreq) 

    mapProb = integration(mapFreq) 

    candidate = getDst(pose, mapFreq) 

    while len(path) == 0: 

        dst = candidate.pop() 

        roster = getRoster(pose, dst, mapFreq) 

        path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq) 

        target = nextPoint(x, y, path, 0) 

 

    while True: 

        pose = getPose() 

        x = pose['Pose']['Position']['X'] 

        y = pose['Pose']['Position']['Y'] 

        gridRobotX = gridizeX(x) 

        gridRobotY = gridizeY(y) 

        laser = getLaser() 

        front = laser['Echoes'][130 : 140] 

         

        end = isEnd(mapFreq) 

        if end: 

            break; 

        if replan(roster, mapFreq) or distance(x, y, path[-1][0], path[-1][1]) < 1: 

            path = [] 

            response = postSpeed(0, 0) 

             

            for i in range(20): 

                candidate = getDst(pose, mapFreq) 
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                while len(path) == 0: 

                    dst = candidate.pop() 

                    roster = getRoster(pose, dst, mapFreq) 

                    path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq) 

                    target = nextPoint(x, y, path, 0) 

                if len(path) != 0: 

                    break 

        mapFreq = mapUpdate(pose, laser, mapFreq) 

        blurMapFreq = gro(mapFreq) 

        mapProb = integration(mapFreq) 

        if isVfh(front): 

            psi = atan2(path[target][1] - y, path[target][0] - x) 

            # vfh(pose, laser, psi) 

            response = postSpeed(0, 0) 

            sleep(0.5) 

            response = postSpeed(0, -1.0) 

            sleep(3) 

            path = [] 

            response = postSpeed(0, 0) 

            for i in range(20): 

                candidate = getDst(pose, mapFreq) 

                while len(path) == 0: 

                    dst = candidate.pop() 

                    roster = getRoster(pose, dst, mapFreq) 

                    path = pathPlan([gridRobotX, gridRobotY], dst, blurMapFreq) 

                    target = nextPoint(x, y, path, 0) 

                if len(path) != 0: 

                    break 

        else: 

            target = pathFollow(path, pose, target) 

        count += 1 

 

# [numOccupied, numEmpty, total] 

mapFreq = [[[0 for i in range(3)] for j in range(row)] for k in range(col)] 

mapProb = [[0.5 for i in range(row)] for j in range(col)] 

mapTimeLapse = [] 

robotPosTimeLapse = [] 

pathTimeLapse = [] 

pathLength = [] 

count = 1 

pose = getPose() 

x = pose['Pose']['Position']['X'] 

y = pose['Pose']['Position']['Y'] 

gridRobotX = gridizeX(x) 
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gridRobotY = gridizeY(y) 

path = [] 

gridPath = [] 

end = False 

 

threads = list() 

t1 = Thread(target = archive) 

threads.append(t1) 

 

for t in threads: 

    t.setDaemon(True) 

    t.start() 

     

try: 

    main() 

except: 

    pass 
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2. input.py 

 

from sys import argv 

from math import floor, ceil 

 

def getInput(): 

    if(len(argv) != 6): 

        print("Invalid Number of Arguments") 

        print("Format: url, x1, y1, x2, y2 give the coordinates of the lower left and 

upper right corners of the area the robot should explore and map.") 

        exit(1) 

         

    MRDS_URL = argv[1] 

    x1 = argv[2] 

    y1 = argv[3] 

    x2 = argv[4] 

    y2 = argv[5] 

    if(x1 >= x2) or (y1 >= y2): 

        print("Invalid Meaning of Arguments") 

        print("Format: url, x1, y1, x2, y2 give the coordinates of the lower left and 

upper right corners of the area the robot should explore and map.") 

        exit(1) 

    return MRDS_URL, x1, y1, x2, y2 

 

def floorGrid(c): 

    global gridResolution 

    cFloored = floor(c / gridResolution) * gridResolution 

    return cFloored 

 

def ceilGrid(c): 

    global gridResolution 

    cCeiled = ceil(c / gridResolution) * gridResolution 

    return cCeiled 

 

def gridizeX(x): 

    global x0, gridResolution 

    gridX = int((floorGrid(x) - x0) / gridResolution) 

    return gridX 

     

def gridizeY(y): 

    global y0, gridResolution 

    gridY = int((floorGrid(y) - y0) / gridResolution) 

    return gridY 
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def metrizeX(x): 

    global x0, gridResolution 

    metricX = x * gridResolution + x0 + gridResolution / 2 

    return metricX 

     

def metrizeY(y): 

    global y0, gridResolution 

    metricY = y * gridResolution + y0 + gridResolution / 2 

    return metricY 

 

gridResolution = 0.5     

MRDS_URL, lowerLeftX, lowerLeftY, upperRightX, upperRightY = getInput() 

MRDS_URL = MRDS_URL.replace('http://', '') 

x0 = floorGrid(float(lowerLeftX)) 

y0 = floorGrid(float(lowerLeftY)) 

xn = ceilGrid(float(upperRightX)) 

yn = ceilGrid(float(upperRightY)) 

 

row = int((yn - y0) / gridResolution) 

col = int((xn - x0) / gridResolution) 
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3. MRDS.py 

 

import httplib, json 

 

from input import MRDS_URL 

 

# MRDS_URL = 'localhost:50000' 

HEADERS = {"Content-type": "application/json", "Accept": "text/json"} 

 

class UnexpectedResponse(Exception): pass 

 

def postSpeed(angularSpeed,linearSpeed): 

    """Sends a speed command to the MRDS server""" 

    mrds = httplib.HTTPConnection(MRDS_URL) 

    params = 

json.dumps({'TargetAngularSpeed':angularSpeed,'TargetLinearSpeed':linearSpeed}) 

    mrds.request('POST','/lokarria/differentialdrive',params,HEADERS) 

    response = mrds.getresponse() 

    status = response.status 

    #response.close() 

    if status == 204: 

        return response 

    else: 

        raise UnexpectedResponse(response) 

 

def getLaser(): 

    """Requests the current laser scan from the MRDS server and parses it into a dict""" 

    mrds = httplib.HTTPConnection(MRDS_URL) 

    mrds.request('GET','/lokarria/laser/echoes') 

    response = mrds.getresponse() 

    if (response.status == 200): 

        laserData = response.read() 

        response.close() 

        return json.loads(laserData) 

    else: 

        return response 

     

def getLaserAngles(): 

    """Requests the current laser properties from the MRDS server and parses it into a 

dict""" 

    mrds = httplib.HTTPConnection(MRDS_URL) 

    mrds.request('GET', '/lokarria/laser/properties') 

    response = mrds.getresponse() 

    if (response.status == 200): 
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        laserData = response.read() 

        response.close() 

        properties = json.loads(laserData) 

        beamCount = int((properties['EndAngle'] - properties['StartAngle']) / 

properties['AngleIncrement'] + 1) 

        a = properties['StartAngle'] + properties['AngleIncrement'] 

        angles = [] 

        for i in range(beamCount): 

            angles.append(a) 

            a += properties['AngleIncrement'] 

        return angles 

    else: 

        raise UnexpectedResponse(response) 

 

def getPose(): 

    """Reads the current position and orientation from the MRDS""" 

    mrds = httplib.HTTPConnection(MRDS_URL) 

    mrds.request('GET', '/lokarria/localization') 

    response = mrds.getresponse() 

    if (response.status == 200): 

        poseData = response.read() 

        response.close() 

        return json.loads(poseData) 

    else: 

        return UnexpectedResponse(response) 
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4. mapMake.py 

 

from math import sin, cos, floor 

from copy import deepcopy 

 

from basic import size, sign, quaternion2Euler 

from input import gridizeX, gridizeY, row, col 

from MRDS import getLaserAngles 

 

laserAngles = getLaserAngles() 

 

def mapUpdate(pose, laser, mapFreq): 

    global laserAngles 

     

    row, col = size(mapFreq) 

    robotX = pose['Pose']['Position']['X'] 

    robotY = pose['Pose']['Position']['Y'] 

    gridRobotX = gridizeX(robotX) 

    gridRobotY = gridizeY(robotY) 

    robotOri = quaternion2Euler(pose)     

    laserEchoes = laser['Echoes'] 

    laserOverflow = laser['Overflow'] 

     

    mapFreq[gridRobotX][gridRobotY][1] += 1 

    for i in range(len(laserEchoes)): 

        frontierX = robotX + laserEchoes[i] * cos(robotOri + laserAngles[i]) 

        gridFrontierX = gridizeX(frontierX) 

        frontierY = robotY + laserEchoes[i] * sin(robotOri + laserAngles[i]) 

        gridFrontierY = gridizeY(frontierY) 

        if (gridFrontierX < row) and (gridFrontierX >= 0) and (gridFrontierY < col) and 

(gridFrontierY >= 0): 

            if laserOverflow[i]: 

                mapFreq[gridFrontierX][gridFrontierY][1] += 1 

            else: 

                mapFreq[gridFrontierX][gridFrontierY][0] += 1 

         

        line = getLine([gridRobotX, gridRobotY], [gridFrontierX, gridFrontierY], 

mapFreq) 

        for i in range(len(line)): 

            mapFreq[line[i][0]][line[i][1]][1] += 1 

                  

    for i in range(row): 

        for j in range(col): 

            mapFreq[i][j][2] = mapFreq[i][j][0] + mapFreq[i][j][1] 
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    return mapFreq 

 

def getLine(startPoint, endPoint, mapFreq): 

    startPointX = startPoint[0] 

    startPointY = startPoint[1] 

    endPointX = endPoint[0] 

    endPointY = endPoint[1] 

    row, col = size(mapFreq) 

    line = [] 

     

    if abs(endPointX - startPointX) == 0 : 

            numGridInside = int(abs(endPointY - startPointY) - 1) 

            gridInsideX = startPointX 

            gridInsideY =  startPointY 

            for j in range(numGridInside): 

                gridInsideY = gridInsideY + sign(endPointY - startPointY) * 1 

                if (gridInsideY >= 0) and (gridInsideY < col): 

                    line.append([gridInsideX, gridInsideY])           

    else: 

        k = float(endPointY - startPointY) / float(endPointX - startPointX) 

 

        if abs(k) < 1: 

            numGridInside = int(abs(endPointX - startPointX) - 1) 

            gridInsideX = startPointX 

            temp =  float(startPointY) 

            for j in range(numGridInside): 

                gridInsideX = gridInsideX + sign(endPointX - startPointX) * 1 

                temp = temp + sign(endPointY - startPointY) * abs(k) 

                gridInsideY = int(floor(temp)) 

                if (gridInsideY >= 0) and (gridInsideY < col) and (gridInsideX >= 0) and 

(gridInsideX < row): 

                    line.append([gridInsideX, gridInsideY])   

                 

        else: 

            numGridInside = int(abs(endPointY - startPointY) - 1) 

            temp = float(startPointX) 

            gridInsideY = startPointY 

            for j in range(numGridInside): 

                temp = temp + sign(endPointX - startPointX) * abs(1 / k) 

                gridInsideX = int(floor(temp)) 

                gridInsideY = gridInsideY + sign(endPointY - startPointY) * 1 

                if (gridInsideY >= 0) and (gridInsideY < col) and (gridInsideX >= 0) and 

(gridInsideX < row): 

                    line.append([gridInsideX, gridInsideY]) 
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    return line 

 

def integration(mapFreq): 

    row, col = size(mapFreq) 

    mapProb = [[0.5 for i in range(col)] for j in range(row)] 

    for i in range(row): 

        for j in range(col): 

            diff = mapFreq[i][j][0] - mapFreq[i][j][1] 

            if abs(diff) > 7: 

                diff = sign(mapFreq[i][j][0] - mapFreq[i][j][1]) * 7 

            product = pow(9, diff) 

            mapProb[i][j] = 1 - 1.0 / (1 + product) 

    return mapProb 

 

def gro(mapFreq): 

    row, col = size(mapFreq) 

    close = [[0 for i in range(col)] for j in range(row)] 

    blurMapFreq = deepcopy(mapFreq) 

    for i in range(row): 

        for j in range(col): 

            if mapFreq[i][j][0] - mapFreq[i][j][1] > 0 and close[i][j] == 0: 

                neighbour = getNeighbour(mapFreq, i, j, 5) 

                for k in range(len(neighbour)): 

                    if mapFreq[neighbour[k][0]][neighbour[k][1]][0] == 0: 

                        if close[neighbour[k][0]][neighbour[k][1]] == 0: 

                            close[neighbour[k][0]][neighbour[k][1]] = 1 

                            blurMapFreq[neighbour[k][0]][neighbour[k][1]][0] += 50 

                    else: 

                        blurMapFreq[neighbour[k][0]][neighbour[k][1]][0] += 50 

    return blurMapFreq 

 

def getNeighbour(map, i, j, a): 

    row, col = size(map) 

    neighbour = [] 

    for u in range(-a, a + 1): 

        for v in range(-a, a + 1): 

            if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col): 

                neighbour.append([i + u, j + v]) 

    return neighbour 
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5. getDst.py 

 

 

from math import sin, cos, atan2, exp, floor 

 

from basic import size, sign, distance, filter, indexMaxLs, quaternion2Euler 

from input import gridizeX, gridizeY, row, col 

from MRDS import getLaserAngles 

from mapMake import getLine 

 

laserMaxRange = 40 

laserAngles = getLaserAngles() 

 

def getRoster(pose, dst, mapFreq): 

    row, col = size(mapFreq) 

    roster = [] 

    gridRobotX = gridizeX(pose['Pose']['Position']['X']) 

    gridRobotY = gridizeY(pose['Pose']['Position']['Y']) 

    frontierOri = atan2(dst[1] - gridRobotY, dst[0] - gridRobotX) 

    cover = getCover(frontierOri, mapFreq) 

    for i in range(len(cover)): 

        x = dst[0] + cover[i][0] 

        y = dst[1] + cover[i][1] 

        if (x >= 0) and (x < row) and (y >= 0) and (y < col): 

            if mapFreq[x][y][2] == 0: 

                roster.append([x, y]) 

    return roster 

         

def replan(roster, mapFreq): 

    progress = 0.0 

    for i in range(len(roster)): 

        if mapFreq[roster[i][0]][roster[i][1]][2] > 0: 

            progress += 1 

    progress = progress / len(roster) 

    if progress > 0.90: 

        return True 

    return False 

 

def getCover(frontierOri, mapFreq): 

    global laserAngles, laserMaxRange 

    row, col = size(mapFreq) 

    cover = [] 

    robotX = 0 

    robotY = 0 
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    gridRobotX = gridizeX(robotX) 

    gridRobotY = gridizeY(robotY) 

    cover.append([gridRobotX - gridRobotX, gridRobotY - gridRobotY]) 

 

    for i in range(len(laserAngles)): 

        gridFrontierX = gridizeX(robotX + laserMaxRange * cos(frontierOri + 

laserAngles[i])) 

        gridFrontierY = gridizeY(robotY + laserMaxRange * sin(frontierOri + 

laserAngles[i])) 

        if (gridFrontierX <= row) and (gridFrontierX >= 0) and (gridFrontierY <= col) 

and (gridFrontierY >= 0): 

            cover.append([gridFrontierX - gridRobotX, gridFrontierY - gridRobotY]) 

        line = getLine([gridRobotX, gridRobotY], [gridFrontierX, gridFrontierY], 

mapFreq) 

        for i in range(len(line)): 

            cover.append([line[i][0] - gridRobotX, line[i][1] - gridRobotY]) 

    return cover 

 

def isUndetectedAround(mapFreq, i, j, a): 

    row, col = size(mapFreq) 

    for u in range(-a, a + 1): 

        for v in range(-a, a + 1): 

            if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col): 

                if mapFreq[i + u][j + v][2] == 0: 

                    return True 

    return False 

 

def isObstacleNear(mapFreq, i, j, a): 

    row, col = size(mapFreq) 

    for u in range(-a, a + 1): 

        for v in range(-a, a + 1): 

            if (i + u >= 0) and (i + u < row) and (j + v >= 0) and (j + v < col): 

                if mapFreq[i + u][j + v][0] > 0: 

                    return True 

    return False 

 

 

def getFrontier(mapFreq): 

    row, col = size(mapFreq) 

    frontier = [] 

    for i in range(row): 

        for j in range(col): 

            if mapFreq[i][j][1] - mapFreq[i][j][0] > 0: 

                if isUndetectedAround(mapFreq, i, j, 3): 
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                    if not isObstacleNear(mapFreq, i, j, 4): 

                        frontier.append([i, j]) 

    return frontier 

 

def getDst(pose, mapFreq): 

    row, col = size(mapFreq) 

     

    gridRobotX = gridizeX(pose['Pose']['Position']['X']) 

    gridRobotY = gridizeY(pose['Pose']['Position']['Y']) 

    robotOri = quaternion2Euler(pose) 

     

    frontier = getFrontier(mapFreq) 

    frontier = filter(frontier, 20) 

    d = [1 for i in range(len(frontier))] 

    s = [0 for i in range(len(frontier))] 

    a = [1 for i in range(len(frontier))] 

    v = [1 for i in range(len(frontier))] 

     

    for i in range(len(frontier)): 

        dis = distance(gridRobotX, gridRobotY, frontier[i][0], frontier[i][1]) 

        d[i] = abs(dis - 30) 

 

        frontierOri = atan2(frontier[i][1] - gridRobotY, frontier[i][0] - gridRobotX) 

        a[i] = abs(frontierOri - robotOri) 

        cover = getCover(frontierOri, mapFreq) 

        cover = filter(cover, 10) 

        for j in range(len(cover)): 

            x = frontier[i][0] + cover[j][0] 

            y = frontier[i][1] + cover[j][1] 

            if (x >= 0) and (x < row) and (y >= 0) and (y < col): 

                if mapFreq[x][y][2] == 0: 

                    s[i] += 1 

     

    maxD = max(d) 

    maxA = max(a) 

    maxS = max(s) 

    for i in range(len(frontier)): 

        d[i] = 1 - d[i] / maxD 

        a[i] = 1 - a[i] / maxA 

        s[i] = s[i] / maxS 

         

    pa = 0.1 

    pd = 0.5 

    ps = 0.4 
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    for i in range(len(v)): 

        v[i] = pa * a[i] + pd * d[i] + ps * s[i] 

    if len(v) > 50: 

        indexMax = indexMaxLs(v, 50) 

    else: 

        indexMax = indexMaxLs(v, len(v)) 

     

    dst = [] 

    for i in range(len(indexMax)): 

        dst.append(frontier[indexMax[i]]) 

         

    dst.reverse() 

    return dst 
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6. pathPlan.py 

 

from basic import size 

from input import metrizeX, metrizeY 

 

avoidD = 5 

 

def topoEvaluate(x, y, map, a): 

    row, col = size(map) 

    local = 0 

    for i in range(-a, a + 1): 

        for j in range(-a, a + 1): 

            if (x + i >= 0) and (x + i < row) and (y + j >= 0) and (y + j < col): 

                if map[x + i][y + j][0] > 0: 

                    local += 1  

    s = local / pow(a, 2) 

    return s 

     

     

def pathPlan(init, goal, map): 

    row, col = size(map) 

    path = [] 

     

    cost = 1 

    delta = [[-1,  0],  # go up 

             [ 0, -1],  # go left 

             [ 1,  0],  # go down 

             [ 0,  1],  # go right 

             [-1, -1],  # go upleft 

             [-1,  1],  # go upright 

             [ 1, -1],  # go downleft 

             [ 1,  1]]  # go downright 

 

    closed = [[0 for i in range(col)] for j in range(row)] 

    closed[init[0]][init[1]] = 1 

     

    expand = [[-1 for i in range(col)] for j in range(row)] 

    expand[init[0]][init[1]] = 0 

    action = [[-1 for i in range(col)] for j in range(row)] 

     

    x = init[0] 

    y = init[1] 

    g = 0 

    h = abs(goal[0] - init[0]) + abs(goal[1] - init[1]) 
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    f = g + h + 50 * topoEvaluate(x, y, map, avoidD) 

    open = [[f, g, h, x, y]] 

     

    found = False   # flag that is set when search complete 

    resign = False  # flag set if we can't find expand 

    count = 1 

     

    while found is False and resign is False: 

         

        # check if we still have elements on the open list 

        if len(open) == 0: 

            resign = True 

            return path 

             

        # remove node from list 

        else: 

            open.sort() 

            open.reverse() 

            next = open.pop() 

            x = next[3] 

            y = next[4] 

            g = next[1] 

            expand[x][y] = count 

            count += 1 

              

            # check if we are done 

            if x == goal[0] and y == goal[1]: 

                found = True 

              

            # expand winning element and add to new open list     

            else: 

                for i in range(len(delta)): 

                    x2 = x + delta[i][0] 

                    y2 = y + delta[i][1] 

                     

                    if x2 >= 0 and x2 < row and y2 >= 0 and y2 < col:  

                        if closed[x2][y2] == 0 and map[x2][y2][1] - map[x2][y2][0] > 1: 

                            g2 = g + cost 

                            h2 = abs(goal[0] - x2) + abs(goal[1] - y2) 

                            f2 = g2 + h2 + 50 * topoEvaluate(x2, y2, map, avoidD) 

                            open.append([f2, g2, h2, x2, y2]) 

                            closed[x2][y2] = 1 

                            action[x2][y2] = i 
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    x = goal[0] 

    y = goal[1] 

 

    while x != init[0] or y != init[1]: 

        x2 = x - delta[action[x][y]][0] 

        y2 = y - delta[action[x][y]][1] 

        path.append([metrizeX(x2), metrizeY(y2)]) 

        x = x2 

        y = y2 

          

    path.reverse()     

return path 
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7. pathFollow.py 

 

from time import sleep 

from sys import maxint 

from math import pi, atan2, sin, cos 

 

from MRDS import getPose, postSpeed 

from basic import quaternion2Euler, distance 

 

lookAheadD = 1.6 

k = 1.1 

tolerance = 1.2 

epsilon = 0.4 

linearSpeed = 3.0 

 

def nextPoint(x, y, path, lastPoint): 

    global lookAheadD 

    point = -1 

    temp = maxint 

    for i in range(lastPoint, len(path)): 

        d = distance(x, y, path[i][0], path[i][1]) 

        if (d > lookAheadD) and (d < temp): 

            point = i 

            temp = d 

    if point == -1: 

        point = len(path) - 1 

    return point 

 

''' Follow The Carrot ''' 

def pathFollow(path, pose, target): 

    global k, tolerance, epsilon 

     

    x = pose['Pose']['Position']['X'] 

    y = pose['Pose']['Position']['Y'] 

    ori = quaternion2Euler(pose) 

     

    psi = atan2(path[target][1] - y, path[target][0] - x) 

    deltaOri = psi - ori 

    if deltaOri > pi: 

        deltaOri = deltaOri - 2 * pi 

    if deltaOri < -pi: 

        deltaOri = deltaOri + 2 * pi 

     

    angularSpeed = k * deltaOri 
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    response = postSpeed(angularSpeed, linearSpeed) 

 

    d = distance(x, y, path[target][0], path[target][1]) 

    if (d > tolerance) or (d < epsilon): 

        i = nextPoint(x, y, path, target) 

    else: 

        i = target 

return i 
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8. vfh.py 

 

from MRDS import getLaserAngles, getPose, postSpeed 

from basic import quaternion2Euler, indexMin 

from math import ceil, pi 

from time import sleep 

 

laserAngles = getLaserAngles() 

angularRes = 5 

k = 1.2 

linearSpeed = 0.8 

 

def getRuns(ls): 

    start = [] 

    end = [] 

    i = 0 

    length = len(ls) 

    while i < length: 

        try: 

            i += ls[i :].index(0) 

            start.append(i) 

            try: 

                i += ls[i :].index(1) 

            except ValueError: 

                i = length 

            end.append(i - 1) 

            i += 1 

        except ValueError: 

            break 

    return start, end 

 

def sectorize(angle): 

    global angularRes 

    cAngle = ceil(angle / angularRes) * angularRes 

    sector = int((cAngle - (-90)) / angularRes) 

    return sector 

 

def angularize(sector): 

    global angularRes 

    angular = (sector * angularRes + (-90) + angularRes / 2) / 180 * pi 

    return angular 

 

def vfh(pose, laser, psi): 

    global laserAngles, angularRes, k, linearSpeed 
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    robotOri = quaternion2Euler(pose) 

    if robotOri < -pi / 2: 

        robotOri += pi 

    if robotOri > pi / 2: 

        robotOri -= pi 

    sectorOri = sectorize(robotOri) 

     

    if psi < -pi / 2: 

        psi += pi 

    if psi > pi / 2: 

        psi -= pi 

    sectorTarget = sectorize(psi) 

 

    laserEchoes = laser['Echoes'] 

    vfhAngles = laserAngles[45 : 224] 

    vfhEchoes = laserEchoes[45 : 224] 

     

    numSector = len(vfhAngles) / angularRes 

     

    # Polar Obstacle Density 

    bw = [0 for i in range(numSector)] 

    for i in range(numSector): 

        temp = min(vfhEchoes[angularRes * i : angularRes * (i + 1) - 1]) 

        if temp < 5: 

            bw[i] = 1 

             

    start, end = getRuns(bw) 

 

    if len(start) == 0: 

        response = postSpeed(0, -0.8) 

        sleep(5) 

    else: 

        run = [0 for i in range(len(start))] 

        deltaTarget = [0 for i in range(len(start))] 

        sizeRun = [0 for i in range(len(start))] 

        deltaOri = [0 for i in range(len(start))] 

         

        for i in range(len(start)): 

            run[i] = (start[i] + end[i]) / 2.0 

            deltaTarget[i] = abs(sectorTarget - run[i]) 

            deltaOri[i] = abs(sectorOri - run[i]) 

            sizeRun[i] = end[i] - start[i] + 1 
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        maxT = float(max(deltaTarget)) 

        maxO = float(max(deltaOri)) 

        maxS = float(max(sizeRun)) 

         

        a = 0.2 

        b = 0.2 

        c = 0.6 

        g = [0 for i in range(len(run))] 

        for i in range(len(run)): 

            deltaTarget[i] = deltaTarget[i] / maxT 

            deltaOri[i] = deltaOri[i] / maxO 

            sizeRun[i] = 1 - sizeRun[i] / maxS 

            g[i] = a * deltaOri[i] + b * deltaTarget[i] + c * sizeRun[i] 

             

        index = indexMin(g) 

        targetOri = angularize(run[index]) 

 

        count = 0 

        while count < 20: 

            pose = getPose() 

            robotOri = quaternion2Euler(pose) 

            deltaOri = targetOri - robotOri 

     

            if deltaOri > pi: 

                deltaOri = deltaOri - 2 * pi 

            if deltaOri < -pi: 

                deltaOri = deltaOri + 2 * pi 

                 

            angularSpeed = k * deltaOri 

            linearSpeed = 0.8 

            response = postSpeed(angularSpeed,linearSpeed) 

            count += 1 

            sleep(0.2) 
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9. basic.py 

 

from math import sqrt, atan2 

 

def distance(x1, y1, x2, y2): 

    d = sqrt(pow(x1 - x2, 2)+pow(y1 - y2, 2)) 

    return d 

 

def sign(x): 

    if x > 0: 

        y = 1 

    elif x < 0: 

        y = -1 

    else: 

        y = 0 

    return y 

 

def quaternion2Euler(array): 

    w = array['Pose']['Orientation']['W'] 

    x = array['Pose']['Orientation']['X'] 

    y = array['Pose']['Orientation']['Y'] 

    z = array['Pose']['Orientation']['Z'] 

    phi = atan2(2*(w*z+x*y),1-2*(pow(y,2)+pow(z,2))) 

    return phi 

 

def save(filename, var): 

    f = open(filename, 'w') 

    f.write(str(var)) 

    f.close 

     

def size(x): 

    row = len(x) 

    col = len(x[0]) 

    return (row, col) 

 

def indexMaxLs(ls, num): 

    clone = [] 

    for i in range(len(ls)): 

        clone.append(ls[i]) 

    indexMax = [] 

    for i in range(num): 

        temp = max(clone) 

        indexMax.append(ls.index(temp)) 

        clone.remove(temp) 
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    return indexMax 

 

def indexMin(ls): 

    temp = ls[0] 

    index = 0 

    for i in range(len(ls)): 

        if ls[i] < temp: 

            temp = ls[i] 

            index = i 

    return index 

 

def filter(ls, resolution): 

    length = len(ls) / resolution 

    temp = [] 

    if length == 0: 

        temp.append(ls[0]) 

    else: 

        for i in range(length): 

            temp.append(ls[resolution * i]) 

return temp 
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10. visualize.m 

 

clc; clear; 

close all 

load('map.txt') 

load('pose.txt') 

load('path.txt') 

load('pathLength.txt') 

load('mapFreq.txt') 

row = 200; 

col = 200; 

timeStep = length(map) / (row * col); 

  

occupied = zeros(row, col); 

empty = zeros(row, col); 

freq = zeros(row, col); 

for i = 1 : row 

    for j = 1 : col 

        occupied(i, j) = mapFreq(((i - 1) * col + j - 1) * 3 + 1); 

        empty(i, j) = mapFreq(((i - 1) * col + j - 1) * 3 + 2); 

        freq(i, j) = mapFreq(((i - 1) * col + j) * 3); 

    end 

end 

figure 

imagesc(occupied) 

figure 

imagesc(empty) 

figure 

imagesc(occupied./freq) 

figure 

imagesc(empty./freq) 

figure 

imagesc(freq) 

  

mapProb = zeros(row, col, timeStep); 

for i = 1 : timeStep 

    for j = 1 : row 

        mapProb(j, :, i) = map(((i - 1) * row + j - 1) * col + 1 : ((i - 1) * row 

+ j) * col ); 

    end 

end 

  

robotPose = zeros(timeStep, 2); 

for i = 1 : timeStep 
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    robotPose(i, :) = pose((i - 1) * 2 + 1 : 2 * i); 

end 

  

maxL = max(pathLength); 

trajectory = zeros(maxL, 2, timeStep); 

k = 1; 

for i = 1 : timeStep 

    temp = path(k : k - 1 + 2 * pathLength(i)); 

    k = k + 2 * pathLength(i); 

    for j = 1 : pathLength(i) 

        trajectory(j, :, i) = temp((j - 1) * 2 + 1 : 2 * j); 

    end 

end 

  

for i = 1 : timeStep 

%     figure 

    imagesc(-mapProb(:, :, i)) 

    colormap(gray) 

    hold on 

    plot(robotPose(i, 2), robotPose(i, 1), 'r*') 

    hold on 

    plot(trajectory(1 : pathLength(i), 2, i), trajectory(1 : pathLength(i), 1, 

i), 'b-', 'LineWidth', 2) 

    F(i) = getframe(); 

end 

figure 

movie(F, 1, 10) 

% movie2avi(F, 'Exploration.avi','compression','None','fps',2); 

  

figure 

imagesc(-mapProb(:, :, timeStep)) 

colormap(gray) 
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11. mapper 

 

#!/bin/bash 

 

# Example script for calling mapper. Don't forget to make it executable (chmod +x mapper) 

# Change the last line (java Mapper ...) to suit your needs 

# Author: Ola Ringdahl 

# 

# Inputs: 

# url specifies the address and port to the machine running MRDS.  

# x1, y1, x2, y2 give the coordinates of the lower left and upper right corners of the 

area the robot should explore and map. 

 

if [ "$#" -ne 5 ]; then 

    echo "Usage: ./mapper url x1 y1 x2 y2" 

    exit  

fi 

 

url="$1" 

x1="$2"  

y1="$3"  

x2="$4"  

y2="$5" 

 

python main.py $url $x1 $y1 $x2 $x2 


