Autism-related gene mbd5 disruption impairs iron homeostasis in zebrafish

遗传与发育协同创新中

Ligiang Wei, Jianhua Guo, Yan Pi, and Su Guo

Introduction

- MBD5 is only locus of 2q23.1 microdeletion syndrome, whose phenotypic features include autism, seizures, sleep disturbance, and craniofacial abnormalities.
- MBD5 also regulates iron metabolism, however, the link between iron homeostasis and autism spectrum disorder remains poorly known.
- Zebrafish, a model for neuropsychiatric disorders, can be bred in large groups, is easy for genetic manipulation and drug screening, with relatively simple behavior to observe, and transparency that allows live imaging.

Experimental methods

Using CRISPR/Cas9 system to construct zebrafish mutants.

High-throughput Behavior test—using Noldus DanioVision® system to record the behavior and track the movement by Ethovision® software.

Analyze the expression of iron metabolism-related genes by

Acknowledgement & references

This work was supported by Top-talented Student Program of School of Life Sciences, Fudan University.

Mullegama, Sureni V., et al. "Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder." European Journal of Human Genetics 22.1 (2014): 57-63. Stewart, Adam Michael, et al. "Developing zebrafish models of autism spectrum disorder (ASD)." Progress in Neuro-psychopharmacology & Biological Psychiatry (2014): 27-36.

Tao, Yunlong, et al. "MBD5 regulates iron metabolism via methylation - independent genomic targeting of

Fth1 through KAT2A in mice." British Journal of Haematology 166.2 (2014): 279-291.

Results

1. Zebrafish mbd5 mutants are more susceptible to iron treatment during early development.

Gehan-Breslow-Wilcoxon Test, 0.5mM, P<0.001; 1mM, P<0.001.

2. Iron treatment fails to induce behavior changes in mbd5 mutants.

3. The expression of iron metabolism-related genes are dysregulated in mbd5 mutants and are aggravated with iron or iron chelator treatment.

Discussion

- MBD5 may play a role in response to environmental iron changes and may directly regulate the expression of iron metabolismrelated genes.
- Iron metabolism dysfunction caused by MBD5 mutation may not be the cause for autism.
- Future experiments like ChIP-seq and tissue elements analysis will provide more evidences.