
ORIGINAL PAPER

Meta-analysis of gene expression profiles indicates genes
in spliceosome pathway are up-regulated in hepatocellular
carcinoma (HCC)
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Abstract Hepatocellular carcinoma (HCC) is among the

commonest kind of malignant tumors, which accounts for

more than 500,000 cases of newly diagnosed cancer annu-

ally. Many microarray studies for identifying differentially

expressed genes (DEGs) in HCC have been conducted, but

results have varied across different studies. Here, we per-

formed a meta-analysis of publicly available microarray

Gene Expression Omnibus datasets, which covers five in-

dependent studies, containing 753 HCC samples and 638

non-tumor liver samples. We identified 192 DEGs that were

consistently up-regulated in HCC vs. normal liver tissue. For

the 192 up-regulated genes, we performed Kyoto Encyclo-

pedia of Genes and Genomes pathway analysis. To our

surprise, besides several cell growth-related pathways,

spliceosome pathway was also up-regulated in HCC. For

further exploring the relationship between spliceosome

pathway and HCC, we investigated the expression data of

spliceosome pathway genes in 15 independent studies in

Nextbio database (https://www.nextbio.com/b/nextbioCorp.

nb). It was found that many genes of spliceosome pathway

such as HSPA1A, SNRPE, SF3B2, SF3B4 and TRA2A

genes which we identified to be up-regulated in our meta-

analysis were generally overexpressed in HCC. At last, using

real-time PCR, we also found that BUD31, SF3B2, SF3B4,

SNRPE, SPINK1, TPA2A and HSPA1A genes are sig-

nificantly up-regulated in clinical HCC samples when

compared to the corresponding non-tumorous liver tissues.

Our study for the first time indicates that many genes of

spliceosome pathway are up-regulated in HCC. This finding

might put new insights for people’s understanding about the

relationship of spliceosome pathway and HCC.
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Introduction

Hepatocellular carcinoma (HCC) is among the commonest

kind of malignant tumors, which accounts for more than

500,000 cases of newly diagnosed cancer annually [1]. The

high death rate of HCC makes it the second most notorious

killer of patients comparing to all other cancers. Even though

the exact cause of HCC is unknown, extensive investigations

indicate strong correlation between HCC and genomic alter-

ations [2]. These genomic alterations include both genetic

abnormalities and epigenetic alterations [3, 4]. Whereas the

traditional methods to study hepatocarcinogenesis based on

single gene mutation, modern approaches utilize pathway

analysis as the breakthrough point [5]. Pathway alterations are

believed to be a more accurate, reasonable and comprehensive

description of oncogenesis than single gene alterations, which

bring oncogenesis study to a whole new level [6].
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However, before the invention of microarray tech-

nology, correlation between genes and cancer can only be

verified in a time-consuming and highly specialized fash-

ion. Genechips make large-scale and high-throughput gene

screening a possible task [7]. Different genechips are tar-

geted for various purposes, including gene mutation, copy-

number and expression test. In our study, we focus on gene

expression profiling array in HCC. A significant increase

(or decrease) in mRNA concentration in tumor samples

indicates protein expression alteration during tumor trans-

formation or progression [8].

DNA microarray technology provides a searching tool

for differentially expressed genes (DEGs) by investigating

the gene expression profile, but the results had varied

across different studies. Meta-analysis is referred to as

summary analysis, which integrates information from

multiple studies. Meta-analysis could overcome the

limitation of small sample sizes, rare outcomes and poor

quality of trials [9]. With the increasing number of public

available microarray datasets, meta-analysis of multiple

datasets has been widely used and proven to be a useful

method in searching DEGs in cancers [10–13].

In this study, we used open-source statistics software R to

meta-analyze gene expression profiling data of five inde-

pendent studies covering 753 HCC samples and 638 non-

tumor liver samples in total. We found that mRNA level of

several pathways was up-regulated in HCC, including ribo-

some, proteasome and other cell growth-related pathways.

These pathways are expected to be up-regulated since cancer

cells are known for their high growth rate. Surprisingly, we

found that spliceosome pathway was also up-regulated in

HCC. We further explored Nextbio database for more in-

formation about spliceosome pathway genes overexpression

in HCC. It was found that many genes of spliceosome

pathway were generally overexpressed in HCC.

Spliceosome is the ribonucleoprotein (RNPs) machine

removing noncoding introns from precursor messenger

RNAs (pre-mRNAs), which is comprised of more than 200

kinds of protein components [14]. Dramatic compositional

changes in spliceosome can be observed during assembly

and splicing process [15]. Any aberrant change of

spliceosome constituents may cause splicing defects or

alterations, which are associated with many human dis-

eases. Our study, for the first time, indicates that many

spliceosome pathway genes are up-regulated in HCC.

Materials and methods

Data source

Genechip data used in our research are searched in and

downloaded from NCBI Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) database using keyword

‘hepatocellular carcinoma.’ All mRNA expression profil-

ing data series involved in this study were published results

and available to public. To guarantee the fidelity of this

research, we screened these studies for those with Homo

sapiens HCC sample size more than 50. After all these

scrutiny, we finally identified five series of gene expression

microarray data as our analyzing subject [16–23]. Among

these datasets, GSE4024 was designed as control group for

GSE1898 in the original study, which exclusively contains

non-tumor samples. We consider GSE4024 and GSE1898

to be one dataset for convenience in later reference.

Detailed sample information can be seen in Table 1.

Preprocessing data

Statistical analyzing software utilized in this research is R

(http://www.R-project.org/) along with several additional

packages available in bioconductor (http://www.bio

conductor.org). Package GEOquery was used to download

genechip data. GetGEO, accessible in GEOquery package,

is the algorithm used to download data from GEO database

and convert data into data frame readable by R.

After integrating data from the same study into a single

matrix, preprocessing is necessary before further analysis.

First of all, many missing values were created in mi-

croarrays. k-Nearest neighbors (KNN) method imputes the

missing values by averaging non-missing values of its

neighbor, which is found by using Euclidean metric. We

chose KNN method to perform data imputation because of

its efficiency and accuracy [24]. Package impute available

in bioconductor includes an algorithm impute.knn using

KNN method to impute missing values.

Secondly, due to uncontrollable factors, values of the

same gene on different genechips vary significantly. This is

a serious problem obstructing cross-analysis between

genechips. Fortunately, normalization can be a possible

solution. Linear model for microarray analysis package is

Table 1 HCC gene expression datasets used in meta-analysis of

microarrays

GEO series HCC sample Non-tumor sample Total

GSE1898 182 0 182

GSE4024 0 98 98

GSE14520 247 241 488

GSE14811 56 56 112

GSE25097 268 243 511

Total 753 638 1,391

All the studies used are solely focusing on expression difference

between HCC samples and normal liver samples without concerning

different stages of the cancer or any other related factors
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one of the most commonly used normalization package in

Bioconductor, which is built upon Bayes Linear method

[25]. We used algorithm normalizeBetweenArrays to per-

form normalization between different genechips in the

same series. ‘Scale’ is chosen as the method for normal-

ization. This step ensures that later analysis will not be

influenced by factors other than expression level of genes.

Profiling of abnormally expressed genes

In order to determine which genes are up-regulated in HCC

samples, we performed Welch two sample t test between

tumor and non-tumor samples within series. We did not

choose paired t test because these researches were not

designed as paired study originally. In order to overcome

the great number of false-positive results due to multiple

t test, adjusted P value was introduced. By using p.adjust

algorithm in R, we used false discovery rate method, a

relatively strict but more tolerant method than Bonferroni,

to control the test at 0.05 significance level [26]. The ad-

justment means that only 5 % of the positive results might

be false-positive.

Having lists of genes which are up-regulated in each

series, we cross-matched these lists to identify common up-

regulated gene expression. That is to say, we searched for

gene with expression aberration in all four series. If a

positive result is shared by four series, there will be only

6.25 9 10-6 probability left for it to be false-positive.

Pathway analysis

The long list of genes can hardly be interpreted into

characteristics of HCC unless categorized into different

pathways. We chose DAVID (http://david.abcc.ncifcrf.

gov) [27] to perform Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis [28]. KEGG pathway

is the most utilized and dependable pathway database in the

world. Pathway analysis functions by identifying several

most relevant pathways according to the list of genes. After

the analysis, we can not only see which pathways are in-

volved in HCC, but also know which genes are being ex-

pressed aberrantly. In our case, spliceosome and five others

pathways were identified by KEGG pathway analysis.

Analysis expression data of spliceosome genes

in Nextbio database

For further information, we collected expression data of

spliceosome genes in Nextbio database (https://www.next

bio.com/b/nextbioCorp.nb). We searched gene names in

‘Disease Atlas’ section in Nextbio database and used filter

to select RNA expression studies in human. All these ex-

pression data were generated from expression profiling

array between HCC and normal liver samples. Fifteen

studies and 25 comparisons in total are selected and sum-

marized in Fig. 2.

Human tissue samples

Primary HCC tissues and the corresponding non-tumorous

liver tissues were freshly collected from HCC patients who

underwent hepatectomy at Zhongshan Hospital (Shanghai,

China). Written informed consent was obtained from each

patient before tissue acquisition. Samples were snap-frozen

in liquid nitrogen immediately after surgery and stored at

-80 �C for further use.

Reverse transcription polymerase chain reaction

and real-time polymerase chain reaction (RT-PCR)

Total RNA was extracted from HCC samples with Trizol

reagent (Invitrogen), and the first-strand cDNA was syn-

thesized using ReverTra Ace qPCR RT Kit (TOYOBO)

following the manufacturers’ instructions. PCR amplifica-

tion reactions were performed by an iCycler detection sys-

tem (Bio-Rad). Gene expression levels were normalized to

that of the housekeeping gene b2-microglobulin (b2-MG).

Primers for b2-MG were as follows: sense, 50-ATGAG

TATGCCTGCCGTGTGAAC-30 and antisense, 50-TGTG

GAGCAACCTGCTCAGATAC-30. Primers for human

HSPA1A were as follows: sense, 50-AGCTGGAGCAGGTG

TGTAAC-30 and antisense, 50-CAGCAATCTTGGAAAG

GCCC-30; for human SF3B2 were as follows: sense, 50-AC

CAAGACTGAGGAAGAAGAGAT-30 and antisense, 50-T
CCAGCAGGCACTGATGA-30; for human SF3B4 were as

follows: sense, 50-CAGCACCAAGGCTATGGCT-30 and

antisense, 50-TTCACCCGTATTGGCTTCCC-30; for hu-

man SPINK1 were as follows: sense, 50-TTCAACTGA

CCTCTGGACGC-30 and antisense, 50-AGAAGTCTG

GCGTTTCCGAT-30; for human BUD31 were as follows:

sense, 50-ATCCACCACCAGAAAACCCG-30 and an-

tisense, 50-CTCGATGATGCGGCCCACTT-30; for human

PRPF19 were as follows: sense, 50-CCCGTCTCACCA

AGGAAGT-30 and antisense, CTTCCCTCTCTTCTTG

CGCT; for human TRA2A were as follows: sense, 50-CA

GGCATCTACATGGGCAGA-30 and antisense, 50-AGGT

GATCGTCTTCTGTATCGG-30; for human SNRPE were

as follows: sense, 50-CGGATTCAGGTGTGGCTCTA-30

and antisense, 50-TGATCCGACCCAGTTGTTTTCT-30.
The relative gene mRNA expression in paired HCC samples

was calculated as previously described [29].
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Results

Common gene expression alteration and pathway

analysis results

After performing t test using gene expression data from

four series, we identified genes being overexpressed in

HCC samples in each series. Each datasets yielded thou-

sands of abnormal genes. However, when we performed

gene-list cross-matching by their accession number be-

tween all possible three or four series combination of the

four series, the number came down to hundreds. This

phenomenon indicates that even though many genes are

considered to be abnormal according to a single

experiment, only tiny portion of these genes is constantly

up-regulated in different HCC samples. Detailed results

can be seen in Fig. 1. Steps above were performed on R.

Then, common up-regulated genes were sent to KEGG

pathway analysis in DAVID. All of the 192 gene names are

recognized by DAVID (Supplementary Data File—Table

S1 and Table S2: sheet1—Table S1). Output includes six

pathways with P value less than default cutoff P value set

by DAVID (\0.1). Three pathways have P value smaller

than 0.05, which are considered significantly altered in

HCC samples, including ribosome, spliceosome and

nucleotide excision repair (Table 2).

The expression alteration information of related

spliceosome genes in Nextbio database

Next, to ensure our finding is not confined to these 735

HCC samples, we searched in Nextbio database for ex-

pression information of several spliceosome genes between

HCC and normal liver tissue [30]. Based on our previous

meta-analysis results, genes of spliceosome pathway,

BUD31 homolog, HSPA1A, SNRPE, SF3B2, SF3B4,

TRA2A and PRPF19, were selected for further analysis. To

serve as a benchmark, SPINK, which is previously reported

Fig. 1 Flow chart of the meta-analysis. First, Welch t test was

performed between each gene in every HCC and normal samples in

each datasets. Second, the generated lists of up-regulated genes are

assigned to inter-study combination to pick out overlapping genes.

The combination produced lists of common up-regulated genes
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to be highly up-regulated in HCC and believed to be one

HCC marker [31], is also included in analysis. It was found

that significant overexpression of HSPA1A, SNRPE,

SF3B2, SF3B4 and TRA2A genes can be observed in a

great portion of 15 studies, while overexpression of

BUD31 homolog and PRPF19 is less frequent (Fig. 2). The

detail information of Fig. 2 could be found Supplementary

Data File—Table S1 and Table S2: sheet2—Table S2. On

the other hand, though indicated as HCC marker gene,

SPINK1 overexpression in HCC was found in similar or

less number of studies comparing to the five genes. Thus,

we thought that overexpression of spliceosome pathway

genes: HSPA1A, SNRPE, SF3B2, SF3B4 and TRA2A are

strongly associated with HCC. BUD31 homolog and

PRPF19 genes are also overexpressed certain HCC

Table 2 Overexpressed KEGG pathways in HCC

Pathway KEGG ID Count Percentage P-value

Ribosome map03010 7 3.6 5.4E-03

Spliceosome map03040 7 3.6 5.4E-02

Nucleotide excision

repair

map03420 4 2.1 4.8E-02

Proteasome map03050 4 2.1 5.7E-02

Neurotrophin signaling map04720 6 3.1 8.1E-02

RNA polymerase map03020 3 1.6 9.5E-02

The pathways are significant up-regulated according to DAVID

KEGG pathway analysis of lists of up-regulated genes. The per-

centage stands for the percentage of number of up-regulated genes of

this pathway in the list. The P value stands for EASE score, a more

conservative examining value than Fisher exact P value. The cutoff

value we use is 0.1 in this analysis

Fig. 2 Selected spliceosome pathway genes expression profiles in

more HCC expression studies. All HCC and normal liver expression

comparison studies available in Nextbio database are summarized in

this figure. Stuffed pattern refers to up-regulation of the genes, while

hollow pattern refers to down-regulation. The shapes of the pattern

represent relative expression level of the genes in HCC comparing to

normal liver. Circle refers to expression level 1–1.5 times difference.

Triangle refers to 1.5–2.0 times and square refers to over 2.0 times

difference. For example, stuffed square means over 2 times

overexpression of this gene in HCC sample. Positions left for blank

refers to no significant difference in expression between HCC and

normal liver sample. Reference of corresponding study is listed

below: study 1-ref [51], study 2-ref [52], study 3-ref [53], study 4-ref

[18, 19], study 5- ref [54], study 6-ref [55], study 7-ref [56], study

8-no publication yet, study 9-ref [57], study 10-ref [16, 17], study

11-ref [17], study 12-ref [21–23], study 13-ref [58], study 14-ref [59],

study 15-ref [60]. Detailed figures are available in Table S1. Detailed

figures are available in Table S2
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samples. Thus, our meta-analysis results were consistent

with the gene expression data (from 15 independent stud-

ies) in Nextbio database.

Validation of these spliceosome pathway gene

expression alterations by real-time PCR

Primary HCC tissues and the corresponding non-tumorous

liver tissues were used for validation of these spliceosome

gene expression alteration genes in HCC by real-time PCR.

Our results indicated that BUD31, HSPA1A, SNRPE,

SF3B2, SF3B4 TRA2A, PRPF19 and SPINK1 genes all are

up-regulated in our analysis (Fig. 3) (The genes with log 2

ratios C1 or B-1 were determined as significantly changed

(up-regulated or down-regulated).

Discussion

Spliceosome is probably the most complicated RNA–pro-

tein complex in eukaryotic cells [32]. It consists of five

different small nuclear RNPs, naming U1, U2, U4, U5 and

U6, with many other proteins cofactors associated [33].

When catalyzing splicing reactions, spliceosomes are

assembled in a step-by-step manner on their targets. This

splicing process is controlled by base paring of snRNA

with short splicing signal motifs located between exons and

introns of the target mRNAs as well as cis-acting regula-

tory elements on the pre-mRNA and trans-acting splicing

protein factors. Although the exact mechanism driving pre-

mRNAs into different splicing outcomes is yet to be dis-

covered, recent evidence has shown the involvement of

many splicing factors [34].

On the other hand, spliceosome has already been the

target of many anticancer drugs, including Spliceostatin A

and pladienolides [35]. Spliceostatin A was derived from

an natural product FR901464, which is isolated from bac-

terium Pseudomonas sp. When first applied to clinical

treatment, the exact mechanism of Spliceostatin A to in-

hibit cancer progression is unknown. Later, result of Kaida

et al. [36] confirms that Spliceostatin A targets an

Spliceosome complex member SF3B, an subcomplex of

U2 small RNP. Our study indicated that SF3B2 and SF3B4

which are subunits of U2 small RNPs are overexpressed in

HCC.

Although systematic protein-level analysis of spliceo-

some genes expression in cancer has not been reported,

several studies provided evidence that many genes in

spliceosome are up-regulated in cancers. Protein-level up-

regulation of spliceosome gene HSPA1A, SNRPE, TRA2B

and PRPF19 in cancer tissue was reported in previous

studies [33–40]. HSPA1A, also known as Heat Shock

Protein 70, is overexpressed in most cancer cells [26, 36].

Inhibition of HSP70 disrupts protein degradation pathway

[37] and increases sensitivity of leukemia cells to an-

tileukemia agent [38]. Depletion of SNRPE gene by RNA

interference resulted in decreased proliferation of prostate,

breast, lung and melanoma cancer cells [39], while over-

expression of SNRPE caused rapid proliferation of prostate

cancer cells [40]. TRA2B gene is overexpressed in breast,

cervical, ovarian and colon cancer and considered to be a

contributory factor to their malignancy [41–43]. PRPF19,

also known as pre-mRNA processing factor 19, has also

been reported to be involved cell proliferation and apop-

tosis [44]. Overexpression of prpf19 protein in endothelial

cells results in longer life span [45].

Previous genome-wide analysis suggests that 40–60 %

of human genes have alternative splicing forms [46].

Alternative splicing of several cancer-related genes, such

as BRCA1 [47], CD44 [48] and APC [49], can be observed

specifically in cancer, though little is known about how

alternative splicing is involved in cancer [50]. Although

some genes of spliceosome were not shown up-regulated,

our study for the first time indicated that genes of

spliceosome pathway are up-regulated in HCC. Further-

more, we also confirmed that BUD31, SF3B2, SF3B4,

SNRPE, SPINK1, TPA2A, HSPA1A and PRPF19 genes

are all up-regulated in HCC samples. This finding suggests

that spliceosome pathway might play an unidentified role

in HCC. Our study should be helpful for further investi-

gation of the relationship between spliceosome pathway

regulation and HCC, as well as other cancers.
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